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Abstract 

Recent laboratory measurements of the absolute cross sections 

fo r  the excitation of the OI(3S) resonance s t a t e  by electron impact on 

0 and O2 when combined w i t h  c- i n  situ measurements o f  the photoelectron 

energy dis t r ibut ion from 120 t o  300 km show t h a t  photoelectron impact i s  

the principal excitation mechanism f o r  A1304 A resonance radiation i n  the 
0 

dayglow; dissociat ive excitation of O2 is  found t o  play a minor role.  

The laboratory measurements indicate  tha t  the 3S s t a t e  is strongly 

population by cascade processes and imply tha t  the 01(3p3P -t 3s3S; A8446 A) 
0 

t rans i t ion  should be a prominent dayglow emission feature. These experiments 

a l so  show tha t  the excitation of atomic oxygen by low-energy electron impact 

cannot account f o r  the A1304 A o r  1356 A emission observed i n  the tropical 

u l  t raviol  e t  a i  rgl ow. 

0 0 



INTRODUCTION 

The resonance multiplet  of atomic oxygen 01(3s3S - 2p4P) consists 
0 

o f  three lines a t  1302, 1304 and 1306 A and i s  a prominent emission feature  

9 n the vacuum u l  t ravi  ol e t  spectrum o f  the terres t i  a1 dayglow (Donahue and 

Fastie,  1963; Fastie and Crosswhite, 1964; Fastie e t f i . ,  1964; Kaplan 

-- e t  a l , ,  1965; Katyushina, 1965; Fastie,  1968; Buckley and M O O S ,  1970; 

Barth and Schaffner, l970), o f  the aurora (Crosswhite e t  a1 9 1962; Miller 

- et  a1 

and Chubb, 197’0; Barth and Schaffner, 1990). 

believed t h a t  photoelectron impact augmented by resonance scat ter ing o f  so lar  

photons above 300 km i s  the dominant OX(%) excitation mechanism (Donahue 

and Fastie, 1963; Dalgarno, 1964; Tohmatsu, 1964; Kaplan and Kurt, 1965; 

Donahue, 1965; Tohmatsu, 1965; Strickland and Donahue, 1970). 

1968; Peek, 1970) and of the tropical u l t rav io le t  airglow (Hicks 

In the dayglow i t  i s  generally 

A def in i t ive  analysis of t h i s  problem, however, has been hampered 

by a lack of infomation on the absolute magnitude and shape of the to ta l  

cross section f o r  exciting the 3S resonance s t a t e  by electron impact on 0 

and on the actual photoelectron energy d is t r ibu t ion  in the day atrglow. Although 

numerous attempts have been made to  calculate  the equilibrium electron energy 

dis t r ibut ion and the related excitation ra tes  (Tohmatsu, 4964, Nagy and 

2-- 

Fournier, 1965; Stewart, 1965; Tohmatsu e t f i . ,  1965; Green and Barth, 1967, 

Dalgarno I_- e t  a$ . ,  1969; Prasad, 1969; Nagy and Banks, 19701, the results continue 

to  d i f f e r  widely from author to  author ref lect ing i n  par t  the use o f  phen- 

omenological cross sections tha t  a r e  i n  poor agreement w i t h  recent laboratory 

measurements, In general these calculations tend t o  overestimate the absolute 

excitation agate o f  various airglow features and place the a l t i t ude  o f  peak 

2 



emission too low (Doering e t  a l , ,  1970; Feldman e t  a l . ,  1971). 

The absolute cross section f o r  the excitation of the OI(3S) s t a t e  

by electron impact on atomic oxygen 

has now been measured by Stone and Zipf (1971a). 

i s  a l so  available on the absolute cross section fo r  dissociat ive excitation 

Detailed information 

(Lawrence, 1970; Ajello, 1970; Mumma and Zipf, 1971), and Doering -c e t  a l ,  

( 1  970) have measured the photoelectron energy dis t r ibut ion from 120 t o  

300 km w i t h  the sun a t  a zenith angle of 60'. These experiments now permit 

(1) a quant i ta t ive assessment of the role played by photoelectrons i n  the 

excitation of OI(3S) atoms i n  the dayglow, ( 2 )  an evaluation o f  the r e l a t ive  

importance of d i r ec t  versus dissociat ive exci ta t ion,  ( 3 )  a more accurate 

determination of the total  ine la9 t ic  cross section for electrons impacting Qn 

atomic oxygen i n  the important energyhegion froh 9.5 t o  200 eV, and ( 4 )  show 

tha t  low-energy electron'impact cannot be responsible fo r  the A1356 A and 

~ 1 3 0 4  A emission observed i n  the trop+.c.al u l t rav io le t  airglow. In addt'tion 

the laboratory measurements of Borst and Zipf (1971) show t h a t  dissociat ive 

;'\ 

0 

0 

exci ta t ion produces excited atoms w i t h  non-thermal velocity dis t r ibut ions.  

OI(3S) atoms formed by this process will emit broadened resonance l ines  

w i t h  complex line shapes, T h i s  e f f ec t  introduces additional complications 

into the analysis of airglow and auroral 11304 A data using radiat ive 

transport  theory. 

0 
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RESULTS AND DISCUSSION 

In Figure 1 and Table 1 we summarize our present experimental 

knowledge o f  the absolu te ,c ross  sect ions f o r  the d i r e c t  and d issoc ia t ive  

excs’tation o f  the  OI(3S) state. 

workers on the magnitude and shape o f  the d issoc ia t ive  excitatl’on cross 

section from threshold t o  400 eV. The r e su l t s  a r e  quoted w i t h  probable 

absolute errors of approximately 2 15% making these vacuum u l t r a v i o l e t  

measurements comparable i n  accuracy to  the N2 

cross section measurements (McConkey -- e t  a1 . , 1967; Stanton and S t ,  John, 1969, 

Borst and Zipf, 1970) t h a t  a r e  widely used as laboratory standards i n  the  

v i s i b l e  spectral  region. The absolute cross sect ion f o r  dl’rect exc i ta t ion  o f  

atomic oxygen i s  la rger  than the  d issoc ia t ive  channel (progess 2)  by a t  l e a s t  

one order of magnitude throughout the important  lch energy range extending 

from threshold t o  200 eV, 

There i s  general agreement among laboratory 

+ (0,O) f i r s t  negative band 

A t  low energies the OI(3S) exci ta t ion function exhl’bits a well- 

developed peak reaching a maximum absolute value o f  1.2  x 1OWP6cm2 a t  15 eV. 

The  measured 3S exci ta t ion  function does no t  have the cha rac t e r i s t i c  shape 

o f  an allowed e lec t r ic -d ipole  t r ans i t i on .  

by Stone  and Zipf  (1971a) who have shown t h a t  the t o t a l  cross sect ion can be 

readi ly  decomposed i n t o  a d i r e c t  3S channel w i t h  a maximum value of -2-3  x 10-17cm2 

a t  42 eV and a cascade component t h a t  dominates a t  low energies. 

shown i n  F i g u r e  2, Although a mul t ip l i c i ty  o f  atomic oxygen s t a t e s  may be 

excited i n i t i a l l y ,  these states ult imately populate the 3S state  through a 

s e r i e s  cascade t r a n s i t i o n s  involving the 01(3p3P - 3s3S; A8446 A) and 

OI(4p3P - 3s3S; A4368 A )  t r ans i t i ons  as  the principal intermediaries. 

T h i s  unexpected r e s u l t  has been discussed 

T h i s  is 

0 

0 / 
Aurwal ’‘ 
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data (Dick, 1970) suggest tha t  the 01(3p3P - 3s3S) transitions i s  the 

preferred channel, 

excitation, As Table 2 shows, nearly 66% of the total  3S population r a t e  

produced by dissociative excitation o f  O2 i s  due t o  A8446 A cascade 

radiation while ~ 4 3 6 8  A emission contributes less  than 2%. Similar resu l t s  

A similar s i tuat ion ex is t s  w i t h  respect t o  dissociative 

0 

0 

have been obtained i n  studies on CO, In both cases (3p3P)/(3s3S) cascade 

r a t i o  is nearly independent of the incident electron energy f o r  E > 50 eV; 

this behavior is consistent w i t h  the model o f  dissociative excitation proposed 

recently by Borst and Zipf (1971). For the d i r ec t  excitation channel (process 1 )  

the cascade r a t i o  is a sensi t ive function o f  the electron energy as Table 2 

shows, The laboratory measurements indicate tha t  the cross section fo r  exciting 

the 01(3p3P) s t a t e  by electron impact on atomic oxygen is  quite large a t  low 

electron energies ( -  1.1 x 10-16cm2 a t  15 eV) and tha t  the ~ 8 4 4 6  A l i ne  

should be an important emission feature  i n  the dayglow. 

0 

In Figure 3 we compare the laboratory measurements of Stone and Z i p f  

(1971a) w i t h  several theoretical  electron excitation functions f o r  the 01( 3S) 

s t a t e  t h a t  have been used extensively i n  recent airglow analyses. The 

excitation cross sections obtained by Stauffer and McDowell (1966) [curves 

A1 and A21 a re  based on a detailed quantum mechanical calculation which only 

considered d i rec t  excitation of the 3S s t a t e ,  cascade processes were not taken 

into account, The theoretical resu l t s  overestimate the magnitude of the 

excitation cross section a t  electron energies greater than 21 eV [approximation 

A21 and a t  a l l  electron energies above threshold i n  the case of A l .  

of cascade contributions from more energetic 3P s t a t e s  will increase the 

disagreement so tha t  airglow calculations based on the work of Stauffer and 

Inclusion 
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McDowell tend t o  overestimate the 11304 A yield due t o  photoelectron 

impact and the importance o f  this ine l a s t i c  process as an electron energy 

s i n k .  

In  addl'tion t o  the detailed calculations of Stauffer and McDowell a 

semi-empirical cross sections for  the 3S s t a t e  have been developed 

Green and Dutta (1967) and Jusick e t  a l .  (1967), for by aeronomists, 

example, suggest t ha t  an adequate approximation t o  the to ta l  cross section 

is given by the formula 

Q ( E )  = C f W"2 (1 - W/E)' (W/ElQ (3 )  

where Q ( E )  is the to ta l  excitation cross section [as a function of electron 

energy], f i s  the optical  o sc i l l a to r  strength of the t rans i t ion ,  E and W 

are  the impact and excitation energies, and C ,  V ,  and R a re  adjustable 

par-ameters. Curve B was obtained us ing  parameter values recommended 

by these authors and the 3S osc i l l a to r  strength obtained recently by Lawrence 

(1970) and L i n  -- et a l .  (1970). 
\ 

The semi-empirical cross section obtained i n  t h i s  

manner is not .i.n good agreement w i t h  the experimental results. 

Stewart (1965) has developed a similar set of phenomenological cross 

He sections based on analogies w i t h  the few experimental r e 6 ' l t s  available.  

assumes tha t  opt ical ly  allowed t ransi t ions have cross sections which have 

the same shape [ as a function of E/W] as the hydrogen 1s  - 2p t rans i t ion ,  and 

have peak'mqgnitudes, Qmax, given by an expression due t o  Seaton (1962): 

6 



where W and f a r e  as  defined above, 

forbidden t rans i t ions  are assumed t o  follow the shapes of the  helium 

l l s  

and t o  have peak magnitudes determined by the formula 

Spin-exchange or other op t ica l ly  

z3s t r ans i t i on  and the hydrogen 1s - 2s t r ans i t i on ,  respectively,  

Excitation 

exci ta t ion 

formulas. 

s i m i  1 a r  t o  

Qmax W2 = 1.5 x 10-15cm2eV2 (5)  

cross sect ions C1 and C2, which account for the direct and to ta l  

o f  the Oq( 3S) s t a t e  resp{ctively, were constructed using these 

The totali ,cross sect iof  obtained i n  this manner has a shape 

the laboratory result,' b u t  is smaller i n  magnitude by nearly an 

I I 

order of magnitude. 

01 1304 AIRGLOW 

The experimental cross sections presented i n  Figures 1 and 2 

and the -- i n  s i tu  photoelectron energy d i s t r ibu t ion  measurements of Doering 

-- e t  a l ,  (1970) were used t o  ca lcu la te  the absolute population r a t e s  f o r  the 

01(3s3S) and OI(3p3Pp) s t a t e s  due t o  electron impact on 0 and O2 w i t h  the 

s u n  a t  a so la r  zeni th  angle of 60'. These r e s u l t s  a r e  shown i n  Figure 4. 

The atomic oxygen dens i t jes  used i n  the computation were taken from a CIRA 

summer model atmosphere w i t h  an  exospheric temperature of 900°K. 

indicates  t h a t  d i ssoc ia t ive  exci ta t ion is  a mfnor source of 11304 A and 

x8446A radiat ion i n  the dayglow (-1%). 

o f  the  s t a t e  o f  the exci ta t ion functions and the low-energy character of the 

photoelectron spectrum. 

i s  found to  contribute s ign i f icant ly  t o  the populat'i'on o f  the OI(3s3S) and 

01(3p3P) s t a t e s  i n  the  dayglow i n  agreement w i t h  the airglow models first 

discussed by Donahue and Fast ie  (1963) and by Dalgarno (1964). The  calculated 

The calculat ion 
0 

0 

T h i s  i s  not surpr is ing i n  view 

Direct exci ta t ion o f  atomic oxygen by electron impact 
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population r a t e  f o r  the OI(3p3P) state implies tha t  the zenith in tensf ty  o f  

the 01 18446 A l i n e  would be approximately 1.7 kR w i t h  the sun a t  a zenith 

angle of 60°, 

t r ip le t  would be about 1 ,9  kR from electron impact plus an additional -0.3 kR 

due t o  resonance scat ter ing (Strickland $nd Donahue, 1970) a t  high a l t i tudes ,  

Bowen fluorescence (1934; 1947) w i f l  contribute approximately 0.2 kR 

(Donahue and Fastie,  1964) while O2 absorption will decrease the overall 

column production r a t e  by about 20 - 30% (Strickland, personal communication, 

1971). 

zen i th  angle of 60° would be approximately 2kR. 

scat ter ing model proposed by T, M. Donahue (c . f ,  Hicks and Chubb, 1970; Barth 

0 

0 

The corresponding column production r a t e  for  the A1304 A 

Hence the e f fec t ive  O(3S) column production r a t e  w i t h  the s u n  a t  a 

I f  we invoke the resonance 

and Schaffner, 1970), the O(3S) column production r a t e  implied by the laboratory 

and rocket experiments would correspond to  a A1304 A intensi ty  of - 4 kR as 

viewed by an overhead s a t e l l i t e .  

average NRL s a t e l l i t e  measurements of 5 - 8 kR f o r  a 60" so lar  zenith angle 

( R ,  Meier, personal communication 1971). The  results agree w i t h i n  the quoted 

experimental e r ror ,  although the small difference may a l so  be due t o  the use 

of a model atmosphere w j t h  insufficient atomic oxygen (von Z a h n ,  1971); i n  

f a c t  the recent increase i n  the 0/02 density proposed by von Zahn (1970) and 

by Offermann and von Zahn -- e t  a l ,  (1991) would b r i n g  our calculated ~ 1 3 0 4  A 

in to  nearly exact agreement w i t h  t% NRL observations, 

0 

This value compares favorably w i t h  the 

0 

In Figure 5 we compare the OI(3S) population r a t e  based on the 

laboratory and -_I i n  situ measurements (curve 6)  with the results o f  two 

recent theoretical  calculations,  Curve C is based on the work o f  Stewart 

(1970) which  involves an elaborate phenomenological calculation o f  the photo- 

electron energy d is t r ibu t ion ,  The actual electron density prof i le  obtained 
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d u r ~ ~ g  the rocket f lSght o f  Doering cc- et a l e  (1970) was used t o  correct  the 3S 

excitation efficiency curves presented by Stewart (cf .  Figures 2 and 3; 

Stewart, 1970) 

a t  160 km, predicts a peak population r a t e  of 3.4 x 102cm'3sec-1 and a 

Stewart 's calculation places the a l t i t ude  of peak emission 

0 '  

column production r a t e  for  the ~ 1 3 0 4  A tr iplet  of 3.5 kR. 

obtained by Strickland and Donahue (1970) from a radiative 

of A1304 A data obtained by Fastie -- e t  a l .  (1964) a t  a' time 
0 

Curve A was 

transport  analysis 

w b . t h e -  level o f  

solar  aclt.M-ty-was muck lower. Their result implies a column production rate 

of 2.2 kR due t o  a source other than resonance scat ter ing of so la r  photons. 

Both calculations a re  i n  good agreement w i t h  the NRL s a t e l l i t e  data,  although 

there are noticeable differences i n  de t a i l .  

TROPICAL ULTRAVIOLET AIRGLOW 

The laboratory resu l t s  o f  Stone and Zipf  (1971a) suggest t ha t  the 

OI(3S) state  is  e f f i c i en t ly  populated by cascade radiations a t  low electron 

energies and tha t  from threshold t o  approximately 40 &V the cross section has 

a shape charac te r i s t ic  of a spjn-change t rans i t ion ,  Stone and Zipf (1971b) 

have a l so  shown i n  a more recent experiment that-the excitation function fo r  

the Or(%) s t a t e  due to  electron impact on atomic ox$gen 

i s  very similar i n  shape t o  the cross section f o r  the 01(3p3P) state (the 

difference component i n  Figure 2), Their r e su l t s  imply tha t ,  as  f a r  as low 

energy electrons ( E  C. 40 eV) are  concerned, the 3S and 5S s t a t e s  have 

excitation functions tha t  a r e  nearly ident ical  i n  shape. 

was not considered i n  previous discussions of the 1356 A - 1304 A airglow 

T h i s  poss ib i l i ty  
0 0 
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problem. 

energies the 3S s t a t e  is c lear ly  favored over the 5S s t a t e ,  

The laboratory measurements a lso show t h a t  a t  higher electron 

The absolute magnitude of the OI(%) cross section is not known 

w i t h  cer ta inty a t  this moment. The labdratory resu l t s ,  however, place a 

lower limit on the magnitude of Qmax(5S) of approximately 2 x 10"17cm2 

assuming t h a t  the 5S radiat ive lifetime given by Garstang (1961) i s  correct.  

The  dayglow experiments show convincfngly t h a t  the 1356 A/1304 A r a t i o  is  quite 
0 0 

small and a re  consistent with the lower l imi t  established by the laboratory 

data (Stone and Z i p f ,  1971b). Barth and Schaffner (1970), f o r  example, 

report  a value of 0.06 f o r  this r a t io .  When taken together, the laboratory 

and dayglow observations imply t h a t  the excitation of atomic oxygen by a 

f l u x  of low energy electron invariably leads t o  a small 1356 A/1304 A r a t i o  
0 0 

and therefore tha t  this mechanism could not account fo r  the large 1356/1304 

r a t lo s  observed i n  the tropical u l t rav io le t  airglow (Chubb and Hicks, 1970; 

Barth and Schaffner, 1970). 

Furthermore, the work of Stone and Zipf (1971a) implies t ha t  10 - 20 eV 
0 0 

electrons would also strongly excite the 01 8446 A l ine  and t h a t  the A8446 A 

excitation r a t e  would be comparable i n  magnitude t o  the OI(3S) population r a t e .  

T h i s  implies tha t  i n  the tropical airglow the ~ 8 4 4 6  A zen i th  in tens i ty  would 

be approximately 500 R when the A1304 A in tens i ty  was approximately 1 kR as  

viewed from a s a t e l l i t e  above the emission layer. 

0 

0 

0 

The concomitant 9,8446 A 

emission would a lso be confined t o  the geographical regions of O(3S) enhancement. 

The work of Sparrow -- e t  a1 . (1970), however, appears t o  show c lear ly  t h a t  

this is not the case. 

normal airglow signals  i n  a spectral  regfon (6000 - 8500 A )  which includes the 

They observe a maximum signal o f  only 50 R above the 
0 
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01(3p3P + 3s3S) t ransi t ions.  Furthermore, the weak red emission was not 

confined t o  the region of the tropical VUV anomaly. Hence the observational 

data place a s t r ingent  upper limit on the magnitude of ~ 8 4 4 6  emission i n  the 

enhanced equatorial airglow which i s  a t  l ea s t  one order of magnitude smaller 

than the signal t ha t  would have resulted were electron impact on atomic 

oxygen the dominant source of the 01 resonance radiation i n  the tropical 

u l t rav io le t  airglow. 

Although d i rec t  excitation of atomic oxygen alone cannot account f o r  
0 0 

the observed A1356 A/A1304 A i n  the tropical u l t rav io le t  airglow, an 

al ternat ive mechanism might  involve excitation of the OI(3S) s t a t e  by electron 

impact (accompanied by weak A1356 A emission) plus dissociative excitation 

o f  O2 t o  produce the observed ~ 1 3 5 6  A signal.  

i s  based on the conclusions o f  Wells e t  a l .  (1971) who have shown tha t  the 

0 

0 

The possibi l i ty  of this scheme 

ra t io  o f  the dissociative excitation cross sections Q(5S)/Q(3S) = 2. To be 

effect ive dissociative excitation would require a sizeable f lux  of comparatively 

energetic electrons ( E  > 30 eV) and they would have t o  be deposited low 

enough i n  the atmosphere to  counteract the unfavorable 02/0 r a t i o  a t  F region 

a1 ti tudes. 
0 0 

Although this mechanism can account f o r  the A1356 A/A1304 A r a t i o  

observed i n  the tropical u l t rav io le t ,  the re lat ively h i g h  energy electrons tha t  

would be required would also effect ively excite various N2 and N: band 

systems. None of these emission features a re  observed. The infrared atomic 

oxygen lines (A8446 A and A7774 A )  would also be strongly excited (Lawrence, 

1970), b u t  they have not been observed e i ther  (Sparrow e t  a l . ,  1970). 

w i t h i n  the framework of existing laboratory and observational data there i s  

0 0 

Hence, 
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no process or self-consistent s e t  of processes tha t  would allow electron 

fmpact t o  be the dominant source o f  the A1304 A and 1356 A emission 

observed i n  the tropical u l t rav io le t  airglow. 

0 0 

Because of the predominance of atomic oxygen i n  the F-region, the 

thermalization of energetic photoelectrons or secondary electrons formed 

i n  aurora a t  these altitudes i s  controlled almost ent i re ly  by a competition 

between e t a s t i c  losses to  ambient electrons and ine las t ic  losses to  atomic 

oxygen. 

c r i t i c a l  energy (Dalgarno -- e t  a l . ,  1963) a complete s e t  of ine las t ic  cross 

sections fo r  electrons impacting on 0 i s  needed; detailed experimental 

In order t o  calculate the equilibrium photoelectron fluxes and the 

information of this k i n d  i s  not ye t  available. However, useful guidelines 

do exist. 

the ionization continuum and the threshold energies o f  the 3S and 5S s t a t e s  

leads ultimately to  the emission of A1304 A and A1356 A photons, the to ta l  

Because the excitation of oxygen atoms to  s t a t e s  lying between 

0 0 

excitation cross section fo r  the 3S and 5s s t a t e s  can be used to  estimate the 

mean electron energy loss r a t e  i n  this important energy range. The  laboratory 

measurements imply tha t  ine las t ic  losses to  the manifold of quintet  states 

i s  a minor energy s i n k ,  and tha t  below 30 eV excitation o f  the high-lying 

3P s t a t e s  i s  the preferred ine l a s t i c  channel. In Figure 6 we show the 

principal i ne1 a s t i  c cross sections fo r  electrons impacting on atomi c oxygen 

that  have been identified so f a r  on the bas is  of experiment or  theory. 

The experimental de ta i l s  can be found i n  the work o f  Fi  t e  and Brackmann (1959), 

Rothe c- e t  a1 . (1962) and Stone and Z ip f  (1971a,b). 

currently available on the excitation of the lS  and lD s t a t e s  of atomic 

No experimental data are 

oxygen by electron impact. For these processes we rely on the recent cal- 

culations of Henry L- e t  - a1,(1969). 

12  



Finally we note that  dissociative excitation of the 3S s t a t e  i s  

par t icular ly  interest ing because of the potential complications tha t  this 

col l is ion process introduces into a radiation entrapment calculation. The  

01(3S) atoms produced by dissociative excitatfon are  l ikely t o  have 

substantial kinetic energy (Borst and Z i p f ,  1971) and emit highly broadened 

resonance l ines  tha t  may have unusual line shapes. The laboratory studies 

indicate that  the average fragment atom may have an energy of 1 - 2 eV or 

more and that  the velocity dis t r ibut ion of the dissociated atoms i s  a 

sensi t ive function of the incident electron energy, 

emitted by these fas t  atoms will escape as though the atmosphere were 

opt ical ly  t h i n ,  

unusual limb-brightening effects  may be observable. Dissociative excitation 

Much of the radiation 

When this process is  the dominant excitation mode, 

will be most important i n  auroral events where energetic 

abundant and are deposited a t  much lower a l t i tudes  where 

atmospheric constituent. 

electrons a re  

O2 is a major 

13 
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Table I 

Absolute Elect ron Exc i ta t i on  Cross Sections 

For The OI(3S) State. 

Target 
Gas 

o (max) E(max) Reference 

(cm2 1 (ev) 

0 C1.2 - + 0.41 (-16)* 15 Stone and Z i p f  (1971) 

C3.18 f 0.501 (-18) 83 Lawrence (1970) O2 

O 2  3,OO ( ~ 1 8 ) ~  100 A j e l l o  

O2 l3.82 5 0.501 (-18)a'b 83 Mumma and Z i p f  (1971) 

O2 13.04 f 0.501 (-18)' 83 Mumma and Z i p f  (1971) 

* 
Read (1.3 - + 0.4) x 10-16cm2 

' Probable absolute e r r o r  no t  stated. 

Absolute c a l i b r a t i o n  based on the  branching r a t l o  technique 
described by Mumma and Z i p f  (1970) and on the N I ( 2 D  - 2Po]/ 
NI[2D -t 2 D o ]  branching r a t i o  g iven by (a) Labuhn -- e t  a l ,  (1966), 

(b) Stone and Z i p f  (1971c), and (c )  Aarts and De Heer (personnal 
communi c a t i  on, 1970). 
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Table I1 

Relat ive OI(3S). Populat ion Rates 

D i r e c t  channela 0.350 0,282 0.10 0.50 0.83 

Cascade# 8446 ib 0.635 0,706 0.84 0.50 0.17 

4368 ic 0.015 0.014 0.06 -..- 

Coll i sion Process : 

a, e + O[(2,p4)3PJ O[(2p33s)3~] + e 

6, e + O(3P) -+ 0" + e 

0" -+ 0[(2~~3p)~P] + hv 

e + O( 3P) -+ O[(2p33p)3~] + e 

O(3p P) -+ 0(3s3S) + 8446 

c ,  e + o ( 3 ~ )  -+ 0" + E! 

0" -+ 0[(2~~4p)~P] + hv 

e + 0 ( 3 ~ )  -+ O[(~p34p)3~] + e 

0(3p3P) -+ 0(3s3S) + 4368 it 
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Figure Captions 

Absolute cross sections fo r  the excitation of the OI(3S) 

by electron impact on 0 and O2 based on the laboratory experiments 

of Stone and Zipf  (1971) and Mumma and Zipf (1971) respectively. 

Figure 2, The total  O(3S) excitation cross section fo r  electron impact 

on atomic oxygen, The calculations of Stauffer and McDowell 

(1966) were normalized a t  200 eV and used as a measure of the 

d i rec t  (3S) channel, 

cascade contribution. 

Ffgure 1 ,  

The difference curve represents the to t a l  

Figure 3,  Theoretical, semi-empirical and experimental cross sections f o r  the 

excitation of the OI(3s 3S)  s t a t e  b.y electron impact on atomic 

oxygen: 

A1 and A2: Stauffer and McDowell (1966). 

B: Jusick e t  a l ,  (1967). 

C1 and C2: Stewart (1965). 

Experiment: Stone and Zipf  (1 971 a ) .  

Figure 4. The  absolute population rates fo r  the OI(3s 3S) and OI(3p 3P) states 

due to  photoelectron impact on 0 and O2 w i t h  the s u n  a t  a zeni th  

distance of 60°. 

A comparison o f  the OI(3S) population r a t e  based on laboratory 

data and on -I_ i n  situ measurement of the photoelectron energy dis t r ibut ion 

(curve B )  w i t h  recent theoretical treatments [curve A ,  Strickland and 

Donahue (1970); curve C ,  Stewart (l!?70)]. 

Compilation of current laboratory and theoretical  data on the principal 

ine las t ic  cross sections for  electrons impacting on atomic oxygen, 

Figure 5. 

Figure 6. 
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